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ABSTRACT

With the increasing number of components in HPC sys-
tems, transient faults will become commonplace. Today,
network transient faults, such as lost or corrupted network
packets, are addressed by middleware libraries at the cost of
high memory usage and packet retransmissions. These costs,
however, can be eliminated using application-level fault tol-
erance. In this paper, we propose recovery methods for tran-
sient network faults at the application level. These methods
reconstruct missing or corrupted data via interpolation. We
derive a realistic fault model using network fault rates from
a production HPC cluster and use it to demonstrate the ef-
fectiveness of our reconstruction methods in an FFT kernel.
We found that the normalized root-mean-square error for
FFT computations can be as low as 0.1% and, thus, demon-
strates that network faults can be handled at the applica-
tion level with low perturbation in applications that have
smoothness in their computed data.

Categories and Subject Descriptors

B.8.1 [Performance and Reliability]: [Reliability, Test-
ing, and Fault-Tolerance]

Keywords

Resilience; application-level fault recovery; network faults.

1. INTRODUCTION
As high-performance computing (HPC) systems grow in

scale and complexity, fault tolerant techniques become cru-
cial to make effective use of these systems. Due to increasing
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number of components and lower voltages in microprocessor
chips, transient faults will become commonplace in exascale
systems, resulting in reduced system reliability compared
to today’s petascale systems [1]. An important source of
transient faults is the interconnection network. Sources of
network errors include circuit faults of network interface con-
trollers and switches, and cable faults due to external noise
and electromagnetic interference.

According to the June 2013 edition of the Top500 list, 41%
of the systems employ the InfiniBand interconnect. Infini-
Band provides several transport services, with different relia-
bility guarantees, including reliable connection (RC) and un-
reliable datagram (UD). RC is a connection-oriented trans-
port providing reliable and in-order message delivery. Be-
cause a connection between each pair of communicating pro-
cesses or nodes is required, this transport is not scalable [2,
3, 4]. In contrast, UD provides scalability at the cost of re-
liability. UD is a connection-less and unreliable transport—
messages may be lost during transmission but a single end-
point can communicate with any other endpoint in the sys-
tem. UD-based MPI implementations can reduce memory
usage up to 30 times compared to RC-based implementa-
tions [2, 5]. Even though a UD-based MPI implementation
provides significant scalability advantages over an RC-based
implementation, there is an added cost at the MPI layer due
to message retransmissions when network errors occur (MPI
is a reliable transport). Providing reliability may signifi-
cantly increase the overhead of the communication stack [6].

We argue that, for some applications, loosing a number of
network packets (application messages are comprised of one
or more packets) may not cause a significant deviation in
their final outcome. In such scenarios, an application may
decide whether a piece of information is critical or not, and
whether it should be recovered by retransmission. Appli-
cations that can benefit from this approach include those
with underlying smoothness in their computation so that
their outcomes are not too sensitive to lost data. Examples
of these applications include image processing applications
(e.g., fast Fourier transform applications) and probabilistic
computational methods (e.g., Monte Carlo methods).

In this paper, we propose and evaluate novel recovery
methods to cope with network transient faults. We elim-
inate the need of message retransmissions by providing re-
covery at the application level—corrupted or lost data is re-
constructed from non-corrupted data by interpolation. Our
recovery model improves the scalability of MPI implemen-



tations by allowing them to use UD transport without in-
curring retransmissions of faulty messages. We implement
our application-level reconstruction policies in a fast Fourier
transform (FFT) kernel and evaluate their effectiveness by
calculating the normalized root-mean-square (RMS) error.
Our results indicate that application-level recovery can

be effective in reconstructing corrupted data with a small
error—the normalized RMS error of a faulty FFT run com-
pared to a normal run can be as low as 0.1%. We also
show that a simple data reconstruction policy, such as fill-
ing missing data with zeros, works surprisingly well, and
that an FFT computation is more susceptible from packet
errors when the errors occur in complex inputs than when
they occur in real inputs.
Our fault injection model is based on real traces of net-

work errors of a large-scale cluster at Lawrence Livermore
National Laboratory (LLNL). Our 7-month traces allow us
to better understand real-world distributions of transient
faults. We found that 93% of InfiniBand ports have a low
probability of experiencing transient faults in one-hour pe-
riods. However, a few ports (0.29%) experience high error
rates of up to a hundred errors per hour. To the best of
our knowledge, this is the first study of real-world Infini-
Band transient faults in large HPC clusters. Previous stud-
ies analyzed network recovery models under theoretical error
rates [7].
The main contributions of this paper are:

• The proposal and evaluation of novel and accurate
application-level recovery methods for transient net-
work faults.

• A characterization of transient network faults from
seven-month traces of a large, production HPC cluster.

• An analysis of the impact of errors on the result of an
FFT computation based on different numerical inputs
(real and complex).

The rest of the paper is organized as follows: Section 2
provides a brief overview of the InfiniBand architecture and
describes our analysis of network errors based on real traces;
Section 3 describes our FFT application and our proposed
recovery methods; Section 4 describes our fault injection
strategy and experimental results; we survey the related
work in Section 6 and discuss the implications of this work
in Section 5; finally, we conclude in Section 7.

2. ANALYSIS OF NETWORK ERRORS

2.1 InfiniBand Architecture Overview
The main components of an InfiniBand cluster are com-

pute nodes, host channel adapters (HCAs), switches, and
links. As Figure 1 illustrates, compute nodes send messages
over links and switches to other nodes through an HCA. We
define a port to be a physical connection point of either a
switch or an HCA.
As in other networks, an application message is transmit-

ted as multiple data units at the transport and link layers.
We define a transport-layer data unit to be a packet, and
a link-layer data unit to be a frame. Thus, an application
message could comprise multiple packets, and a packet could
comprise multiple frames.
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Figure 1: Main components of the InfiniBand architecture.

2.2 Network Errors
We follow conventional definitions of faults and errors. A

fault is a physical defect, imperfection, or flaw that occurs
in the network hardware (e.g., an external interference). An
error, the manifestation of a fault, causes a deviation from
correctness (e.g., a bit change from 0 to 1 in a network
packet) [8]. The system logs that we used only capture in-
formation about errors. Thus, in the rest of the paper, we
refer to faults and errors interchangeably.

We define a transient fault to be one that manifests itself
one time and disappears after a short period of time. Exam-
ples of transient fault manifestations include symbol errors
in a frame and dropped packets due to lack of buffers at the
receiving port. If we observe errors in a port connected to a
node that is down, we treat them as permanent faults, and
not as transient faults; since the node is down, we will see
errors permanently until it is up again.

Network errors manifest themselves at multiple layers of
the network stack. For instance, in Figure 1 suppose that
node A sends a packet to node F. The packet traverses switch
X and switch Y before reaching node F. A local error be-
tween node A and switch X may trigger a retransmission of
the whole message between A and F.

2.3 Distribution of Errors

2.3.1 Sierra cluster at LLNL

We analyzed error logs from Sierra, a production clus-
ter at LLNL, which is interconnected using a two-level fat-
tree InfiniBand network. The network is built with 36-
port switches on both levels. Sierra comprises 1,944 nodes,
each with two six-core Xeon processors at 2.8 GHz. We
collected network error logs for a period of seven months.
Each log records multiple types of errors per InfiniBand
port every five minutes. Ports include those in switches and
HCAs. Sierra has a total of 11,664 ports and 5,832 4X QDR
(4x10Gbps) links. Equations 1 and 2 illustrate how we cal-
culate the number of ports and links in Sierra; ASIC stands
for Application-Specific Integrated Circuit (i.e., integrated
circuits customized to implement functionality of the net-
work stack).



Table 1: Percentage of total errors per category. T corresponds to transient faults and P to permanent faults.

Error Percentage Type Description

SymbolErrorCounter 73.9505 T Symbol errors detected in a link.
PortXmitDiscards 21.7302 T, P Outbound packets discarded because port is down or congested.
VL15Dropped 2.8291 T VL15 packets dropped due to resource limitations (e.g., lack of buffers)
PortRcvRemotePhysicalErrors 0.6429 P Packets marked with EBP delimiter. Indicates problem in the fabric.
LinkErrorRecoveryCounter 0.5970 T, P Link recovery process has completed. Could be caused by node reboots.
LinkDownedCounter 0.1754 T, P Link error recovery process failed. Could be caused by node reboots.
PortRcvErrors 0.0740 T Number of packets containing errors due to malformed data or buffer overrun.
PortXmitConstraintErrors 0.0010 T, P Packets not transmitted because specs failures, e.g., IP version and partition keys.

3 core switches× 54
ASICs

switch
× 36

ports

ASIC
+

108 edge switches× 36
ports

switch
+

1, 944 HCA ports = 11, 664 ports
(1)

1, 944 HCA–edge switch links +

1, 944 edge switch–core switch links +

1, 944 core switch internal links = 5, 832 links (2)

2.3.2 Error logs

Table 1 shows the major categories of errors and their per-
centage of occurrence. Based on our definition of faults, we
classify them as manifestations of transient or permanent
faults. Some errors can be caused by either type. For exam-
ple, PortXmitDiscards errors can be caused because a port
is down, a permanent problem, or because of congestion, a
transient problem.
Based on Table 1, the most common transient error in

Sierra is SymbolErrorCounter or symbol error (73.95% of
the total). According to the InfiniBand Architecture Spec-
ification (IBAS), symbol errors are minor link errors in a
physical lane and a small number of them is acceptable. The
IBAS indicates that the maximum bit error rate should be
10−12 or 144 errors per hour for a 4X QDR link (see Equa-
tion 3). Ports that experience higher rates could suffer from
sa bad port or cable.

10−12 errors

bit
× 40 · 109

bits

sec
× 60

sec

min
× 60

min

hour
=

144 errors per hour (3)

The second most common error is PortXmitDiscards; it
occurred 21.73% of the time. Since it can originate from
permanent faults, we do not study it in detail. The rest
of the errors occur very infrequently. Thus, we focus our
analysis on symbol errors for the rest of the paper and we
use them as a model for our fault injection strategy.
Figure 2 shows the errors-per-hour distribution of tran-

sient (symbol) errors across the ports of Sierra. We exclude
symbol errors from down ports since we do not consider
them transient, but permanent faults. Ports (on the X-axis)
are sorted by the error rate from high to low and labeled
accordingly. The figure only shows rates for the first 2,000
ports. Ports in the range of 1,651–11,642, which correspond
to 85.8% of the ports, did not show any errors in the 7-
month period. This means that jobs using these ports did
not experience transient faults of this type and, therefore,
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Figure 2: Error rate per port in Sierra. Although the cluster has
a total of 11,664 ports, we only show the rates for the first 2,000
ports. Ports in the range of 1,651–11,642 did not experience any
error in the 7-month period.

did not need to pay the overhead of transient-fault recovery
techniques. We also observe that only two ports (0.017%)
showed an error rate higher than the IBAS maximum bit
error rate.

For the rest of the analysis, we focus on errors occur-
ring during one hour window assuming that our application
of interest, such as the FFT, runs within that amount of
time. Under this scenario, most of the ports experience a
low probability of a transient fault; the error rate of 99.7%
of the ports is less or equal than 1 error/hour. We observe
that there is a small set of ports (only 34) that experience
an error rate higher than 1 error/hour. Thus, in the rest
of the paper, we study recovery techniques for error rates
in the range of one to ten errors/hour to consider the worst
case scenario. Only a few ports (around 17 ports) had error
rates in the order of hundreds per hour; based on experience
we assume that these bad ports can be quickly detected and
fixed by system administrators.

3. APPLICATION-LEVEL RECOVERY

3.1 Application

3.1.1 Fast Fourier Transform

The fast Fourier transform (FFT), one of the most widely
used computational kernels in the world, computes the dis-
crete Fourier transform (DFT) in one or more dimensions.
It is used in a diverse set of fields, from computing convo-
lutions to solving partial differential equations. The FFT
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Figure 3: Overview of our 2D FFT implementation. We compute 1D FFTs in columns and rows. The last transpose (in both
the forward and inverse FFT) brings back the input matrix to it original form.

converts time (or space) to frequency and vice versa. In its
one-dimensional (1D) form, FFTs take an array of N real or
complex numbers and produce an array of size N . Similarly,
multi-dimensional FFTs take an N -dimensional array and
produce an N -dimensional array. Multi-dimensional FFTs
are very important in practice. For example, 3D FFTs are
used in large-scale molecular dynamics codes [9], whereas
2D FFTs are used to manipulate large high-resolution radar
images [10]. In our work, we use a 2D FFT image process-
ing application to validate the effectiveness of network-fault
recovery methods.

3.1.2 Our Parallel FFT

We implement a parallel 2D FFT based on the Cooley-
Tukey algorithm [11]. The input is an array of Nx × Ny

elements. Elements are stored in row-major order and dis-
tributed along the y dimension. Thus, each parallel process
owns Nx/P y-pencils, where P is the number of processes.
Figure 3 shows the procedure for a 4× 4 FFT on two paral-
lel processes (0 and 1) for both the forward and the inverse
FFTs. Each process holds two 4-element y-pencils and per-
forms 1D FFTs in each dimension using the FFTW library [12].
We perform transposes using all-to-all communication. Note
that the forward FFT input is real, whereas its output is
complex—although forward FFTs accept complex data as
input, our input is an image, which contains real data. In
contrast, the inverse FFT takes complex data as input and
produces real data as output.
We implemented our FFT application in C++ with MPI.

Complex numbers are packed (in an MPI buffer) as two
MPI_DOUBLE numbers; one for the real part and another for
the imaginary part. Since real elements only occupy one
number, their imaginary parts are filled with zeros.

3.2 Recovery Methods

3.2.1 Assumptions

We assume that the MPI library divides the application
messages into multiple packets—as most MPI libraries do—
and then transmits them using UD transport to ensure scal-
ability. We assume that the MPI library detects network
errors at a packet granularity and, instead of retransmitting
a corrupted or lost packet, the library notifies the applica-
tion about the corrupted elements in an application message.
These corrupted elements correspond to the corrupted pack-
ets. As previous work demonstrates [2], sliding window pro-
tocols can implement this detection functionality efficiently
at the MPI library.
Note that our application-level recovery methods can be

applied not only to end-user applications but also to dif-

ferent layers of the software stack, including numerical and
communication libraries.

3.2.2 Methods

We describe our interpolation-based recovery methods (see
Figure 4):

1. Zero padding : Fill corrupted elements with zeros. The
overhead of this policy is O(c), where c is the number
of corrupted elements.

2. Average: Fill corrupted elements with the average of
two adjacent non-corrupted elements. One non-corrupted
element comes from the right and the other comes from
the left of the corrupted element. The overhead of this
policy is also O(c).

3. Regression: First, we fit a curve F (x) = y, where x
corresponds to elements and y corresponds to values.
We use n non-corrupted elements from the right and n
from the left of the corrupted element to fit the curve.
Then, we fill corrupted elements by evaluating F (x).
We use a kernel-recursive least squares algorithm and
the dlib machine learning toolkit [13] to train and test
F (x). The overhead of this policy is O(c× n).

3.2.3 Interpolation of Complex Numbers

Interpolation methods, such as averages and regression, do
not work readily on complex data— most regression tech-
niques are designed for real data and assume 1D input. To
address this, we perform interpolation of real numbers inde-
pendently from imaginary numbers. From a given buffer of
complex numbers {(r1+i1), (r2+i2), . . . , (rj+ij), . . . }, where
rj is a real part and ij is an imaginary part, we create two
buffers; one buffer contains real numbersR = {r1, r2, ...} and
another buffer contains imaginary numbers I = {i1, i2, . . . }.
Then, we perform interpolation in R independently from I.

Another solution is to convert complex numbers to magni-
tudes and phases using, for example, the Euclidean distance,
and then perform interpolation. We plan to investigate this
approach in future work.

4. EVALUATION

4.1 Fault Injection
Our fault injector is part of the GREMLINs infrastruc-

ture [14], a toolkit that emulates the behavior of future ma-
chines by injecting perturbations in current machines. We
developed a network-error gremlin that injects network er-
rors from MPI call wrappers, which are implemented via
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Figure 4: Recovery policies for a corrupted three-element packet
on a message of ten elements.

the MPI profiling interface. In particular, we inject errors
into MPI_Alltoall during the FFT global transposes. The
injector determines the number of packets that comprise a
message and selects those that would be affected by network
errors based on our failure model (see Section 4.4).
The injector give us the ability to select when, where, and

to what granularity to inject an erroneous packet. Specifi-
cally we can select: (1) the affected MPI process; (2) the MPI
routine and instance (there are two instances of MPI_Alltoall
in the forward FFT and two more instances in the inverse
FFT); (3) the packet size; and (4) the number of erroneous
packets in a run.
Note that by choosing the MPI_Alltoall instance, we can

control injecting an error on packets that carry input com-
posed of real or complex numbers. The all-to-all operations
of the forward FFT and the first operation of the inverse
FFT carry complex numbers, while the last all-to-all opera-
tion of the inverse FFT carry real numbers.

4.2 Randomizing Elements in a Message
A packet contains multiple message elements, so losing

a packet results in losing a region of contiguous elements;
interpolation methods may not be able to reconstruct a re-
gion of elements accurately if the variations within the region
cannot be estimated from neighboring elements.
To illustrate this problem, consider loosing a packet of

ten elements, ei, ei+1, . . . , ei+9. We can approximate the el-
ement values in the boundaries of the packet (i.e., ei and
ei+9) by using the adjacent elements (i.e., ei−1 and ei+10 re-
spectively). However, it is difficult is estimate values for the
middle elements, such as ei+5, since its adjacent elements,
ei+4 and ei+6, are also unknown.
Because, for a 2D FFT, input data are packed into an

MPI buffer before the all-to-all operation, elements are re-
arranged locally in multiple blocks, one for each process.

This helps alleviate losing contiguous application elements,
but even with this rearrangement a block could span several
packets containing multiple message elements.

To further reduce the possibility of losing contiguous data,
we randomize the order of the elements in a message before
the data are split into packets and sent over the network.
When a packet is received, we use the same randomization
function to appropriately re-order the received elements into
the application’s buffer. We implemented this mechanism in
our GREMLIN emulation framework. Figure 5 illustrates
this procedure.
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4 7 1 

… 

Packet 1 

5 8 2 

Packet 2 

6 3 9 

Packet 3 

… 

Random 

ordering 

1 2 3 4 5 6 7 8 9 … 

Received buffer (re-ordered) 
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Figure 5: Randomizing the order of the elements in a message
before network transmission. In this example, a packet comprises
three elements. When a packet error occurs, we avoid losing con-
tiguous data.

4.3 Evaluation Metric
We use the normalized root-mean-square (RMS) function

to calculate the error of our recovery policies:

Error =

√

∑N

i=1
(yi − ŷi)

2

N

ymax − ymin

, (4)

where y is an element of the FFT input, ŷi is an element the
FFT output, and N is the number of elements. The denom-
inator corresponds to the range of values of the input data.
Formula (4) can be expressed as a percentage (multiply by
100), where lower values indicate less residual variance based
on the magnitude of the input. In our FFT implementation,
the output data are equal to the input data, thus a zero error
percentage means that our recovery methods are perfect.

4.4 Experiments and Results
In this section, we evaluate the error of each recovery

policy as described in the previous section. We run our
FFT application with 1,000 MPI processes on Sierra using
a 4, 267×4, 267 pixels image as input. The image was taken
from a NASA Mars exploration rover [15].

In our experiments, an MPI process is selected randomly
and packet errors are injected in one of the four MPI_Alltoall
operations. We perform injections for error rates of 1, 5, and
10 packet errors per run, which emulates the highest error
rates observed in our log analysis of Sierra. We vary the
packet size in each experiment to investigate different MPI
implementations that could make use of different packet
sizes to transmit messages under UD. We use packets of 256,
512, 1,024, 2,048, and 4,096 bytes of size. Each experiment
is run 10 times and we calculate the average error.
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Figure 6: Normalized RMS error for the evaluated recovery policies. The injected packet error rate increases across the plots
(from left to right). Zero_padding achieves the minimum amount of error compared to Average and Regression.

4.4.1 Normalized RMS Errors

Figure 6 shows the normalized RMS error for each of our
recovery policies. Figure 6a shows the results for an er-
ror rate of one (packet) error per run. We observe that
zero padding and average incur less error than regres-

sion—about one order of magnitude difference. Both zero

padding and average keep the error under 1%, even for large
a packet size of 4,096 bytes. On the other hand, the error
for regression could reach up to 10% for large packet sizes.
Figure 6b and 6c show the results for increased error rates

of five and ten packet errors per run respectively. We observe
that the overall magnitude of the normalized RMS error
increases for all the methods. We also observe that, contrary
to our expectations, zero padding incurs the smallest error;
the maximum normalized RMS error for zero padding is
2.4% for ten packet errors per run and the maximum packet
size of 4,096 bytes.
From these experiments we learned the following: (1) the

normalized RMS error is proportional to the packet size and
the error rate, which is what we expected because the higher
the packet size and error rate, the larger the amount of data
that is lost; (2) the normalized RMS error is low, as low
as 0.1% for MPI packets of small size, in the order of 256–
512 bytes; and (3) filling lost data with zero values works
surprisingly well to recover from errors in FFTs. We explain
(3) in the next section where we analyze the effect of packet
errors on different data inputs (i.e., real and complex).

4.4.2 Errors on Real and Complex Input

We separate packet errors that occur on real inputs from
those on complex inputs. Recall that when a packet error
occurs in any of the first three transposes of the FFT, it
involves complex data, whereas when a packet error occurs
in the last transpose, it involves real data.
Figure 7 shows the normalized RMS error for the three re-

covery techniques from real and complex inputs. The mag-
nitudes of the error from real input are overall lower than the
ones from complex input, for all the methods. The reason
for this is that real data elements are numerically correlated
to their neighbor data elements—at least for the case of an
image. Thus, interpolation techniques take advantage of this
fact to reconstruct lost data. In contrast, complex numbers,
which have two components (real and imaginary) are poorly
correlated; elements between corrupted and non-corrupted
data elements are not numerically similar.

In Figure 7a, we observe that contrary to the results of
Section 4.4.1, zero padding incurs higher normalized RMS
error than the other methods. While the other methods
can take advantage of neighbor non-corrupted data to in-
terpolate real numbers, the zero padding method cannot.
Average is the approach the one with the smallest error.
We attribute this result to the fact that regression fits its
model (F (x)) with noise data, i.e., data that are unnecessary
to make accurate predictions.

Figure 7b shows similar results to those in Section 4.4.1.
Zero padding has the smallest amount of error. Since there
is a low correlation between a complex data element and its
adjacent element, interpolation methods, average and re-

gression, tend to produce noisy (new) elements; it is better
to assume that a component of a complex number, either real
or imaginary, is simply zero. Since there are more chances of
getting a packet error on complex than real numbers, packet
errors with complex data dominate the overall normalized
RMS error (as show in Section 4.4.1).

5. DISCUSSION
In this section, we discuss the limitations and practical

implications of this work.
First, our recovery techniques assume that the input data

show some numerical locality (i.e., adjacent data is corre-
lated). We leverage this property to reconstruct corrupted
or lost data due to network failures. In our FFT computa-
tions that process an image with real input, the normalized
RMS error is small under realistic network error rates.

Second, initial measurements indicate that one can imple-
ment our recovery policies with low overhead for the zero

padding and average methods, which operate only on one
to three elements for each erroneous element. In some cases,
we can even eliminate this overhead completely by simply
initializing receive buffers appropriately (zeros for the zero

padding method). We acknowledge that methods such as
regression may be more costly. Different applications may
show different tradeoffs in terms of which policies are more
accurate and which can be implemented more efficiently. We
anticipate that our recovery methods are at least more scal-
able than current RC-based MPI implementations since the
memory overhead of keeping per-process connections is fully
eliminated with our UD-based MPI implementation.

Third, there is more than one metric to measure the devia-
tion of the recovered data versus the uncorrupted (reliable)
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Figure 7: Normalized RMS error for real and complex inputs.

data. We used the normalized RMS error (as opposed to
the RMS error) because it takes into account the numerical
magnitude of the input. A different metric may produce dif-
ferent results in terms of the magnitude, but we expect the
trends of the curves to be similar. Ultimately, the choice of
an error metric depends on the application and its input.
Finally, recovery methods other than the ones proposed

in this work are possible. Our choice of reconstruction poli-
cies represent a balanced approach in terms of accuracy and
overhead of implementation. For instance, sequential-data
machine-learning techniques can be used to improve the re-
gression method, but they are computationally expensive,
which would hinder the scalability of our approach.

6. RELATED WORK
Algorithm-based fault tolerance (ABFT) methods have

been proposed to detect and correct errors in matrix op-
erations (e.g., addition, multiplication, scalar product, and
transposition) in parallel systems [16, 17, 18]. The main idea
is to compute extra information, such as checksums, that can
be used for error detection and error correction. Moreover,
their focus is on detection and correction from memory- and
CPU-related hardware errors, rather than from network er-
rors. Our proposed recovery policies do not require storing
extra information, instead, we allow the application to re-
construct corrupted data from non-corrupted data at the
cost of accuracy.
A large amount of work has been done in fault-tolerance

for FFTs. Wang and Jha [19] consider an algorithm-based
approach to tolerate errors in networks of FFTs, which has
lower overhead than previous approaches; it can be imple-
mented in hardware with minimal overhead. Oh et al. [20]
reported an algorithm-based approach to detect errors FFT
that achieves a high error coverage with low false positive
rate by applying linear weight factors to checksums. Fu and
Yang [21] proposed an algorithm to survive process failures
in a parallel implementation of FFTs. These approaches are
complimentary to our proposed methods since they do not
focus on network faults and do not take into account MPI
scalability (as we do).
From a scalability point of view, the research studies that

are closest to our work provide scalable UD-based implemen-

tations of MPI [2, 3]. Our methods, in fact, rely on these
implementations to achieve scalability. Our work eliminates
the need of packet retransmissions by reconstructing missing
or corrupted data at the application level.

Finally, a body of work analyzed network error logs from
data centers [22], IP backbone networks [23], and wide-area
networks [24, 25], but none analyzed errors from InfiniBand
networks, which are used frequently in HPC systems. Re-
cently, Koop et al. [26] proposed an MPI design for Infini-
Band that can cope with network and HCA errors. Unlike
this work, our focus is to investigate the implications of han-
dling network errors at the application level.

7. CONCLUSIONS AND FUTURE WORK
We propose and evaluate application-level recovery meth-

ods for transient network faults. Our methods can leverage
the scalability advantages of UD-based MPI implementa-
tions but without the need of packet retransmissions. Our
methods allow applications that are generally resilient to mi-
nor errors during computation to recover from packet errors
via data interpolation. Our results show that, in an FFT
code, normalized RMS errors can be as low as 0.1% for ap-
plication messages that are transmitted with small packet
sizes (i.e., 256–512 bytes). We also show that our recovery
methods are more accurate on real inputs than on complex
inputs. Lastly, we demonstrate that a simple recovery policy,
such as filling lost data with zero values, works surprisingly
better than interpolation methods such as regression-based
methods. Ultimately, the accuracy of our methods are ap-
plication and input dependent. The results from our FFT
evaluation are promising and encourage us to investigate
other algorithms that may be resilient to transient errors.

Our future work includes the following. First, we plan to
evaluate the accuracy of our proposed techniques on various
applications and with different inputs. We intend to clas-
sify these applications by their resiliency to network faults.
We are also considering implementing our recovery methods
in numerical or communication libraries so that application
developers can use them without changes to their codes.
Second, we plan to evaluate network error distributions of
multiple HPC clusters to study factors that contribute to
transient network faults. These factors may include vendor



provider, component specific (cables, switches, and HCAs),
node placement, and network topology.
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